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Nonuniversality of nucleation kinetics following a finite rate quench
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~Received 6 July 1998; revised manuscript received 15 December 1998!

Nucleation fluxes and numbers of nuclei are evaluated as functions of time and the quench rate,q, using
asymptotic technique. In contrast to predictions of conventional~adiabatic! nucleation descriptions with the
number of quenched-in nuclei scaling asq21, a different scalingq2a is observed with nonuniversal, model-
dependent values ofa,1. @S1063-651X~99!08704-8#

PACS number~s!: 64.60.Qb, 05.40.2a, 05.70.Ln
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It is well known @1,2# that a rapid quench can bring
physical system into a metastable state which is charac
ized by a prolonged lifetime. The latter is determined by
intensity of nucleation and growth of the stable phase, be
the system settles in thermodynamic equilibrium. Expe
mental examples include supersaturated vapor@1#, under-
cooled or overheated liquids@2#, binary fluids @3#, glass-
forming melts @4,5#, amorphous solids@6#, electron-hole
liquid @7#, to mention only a few. In view of the enormou
variety of nucleation models~both ‘‘classical’’ @8–12# or
‘‘nonclassical,’’ e.g.,@2,13#!, which are used to explain o
predict the observed behavior, one requires an understan
of the sensitivity of the description to the selection of a s
cific type of a nucleation mechanism, and, on the other ha
an understanding of its universality.

As a first step to understand the differences between v
ous nucleation models, one can consider a much simpler
terministic growth of nuclei, which neglects fluctuations.
typical growth rate is given by

v~r !5t21r 2n~121/r !, ~1!

with r[R/R* (R* being the critical size! andt some char-
acteristic time scale which will be described shortly. T
value of the power index,n, depends on the mass exchan
mechanism between the nucleus and the metastable p
with n50,61 corresponding to surface-@11# or diffusion-
limited @14# growth or cavitation@10#, respectively. Similar
expressions also appear in field-theoretic descriptions f
nonconserved (n50 @15#! or conserved (n51 @16#! order
parameter, withn521 corresponding to inflation models
Combinations of several types of dynamics can be enco
tered both within classical@17# and nonclassical description
@13#, but the main feature of the changing sign atR5R*
~equivalently, the presence of a single unstable mode@18#! is
typical, and determines the universality of the kinetic part
the description. The nonlinear off-critical dynamics, on t
other hand, is model-sensitive.

The parametert in Eq. ~1!, which formally can be defined
as (dv/dr)21 at r 51, provides a link between growth an
nucleation@10#, with t21 corresponding to the increment o
the unstable mode in field-theoretic descriptions@18#.
Nucleation—the possibility of a nucleus to go against
drift prescribed by Eq.~1!—becomes feasible due to therm
fluctuations. This leads either to a Fokker-Plank-type eq
tion @10,11# ~discrete master equation@8,9,12#! for the distri-
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bution of nucleif (r ) in the classical picture, or to functiona
equations for the order parameter in field-theoretic~nonclas-
sical! descriptions.

The key characteristic of the nucleation problem is t
minimal work, W(R), which is required to create a give
nucleus. Its maximum,W* ~saddle point in the multidimen
sional case!, determines the barrier to nucleation. In speci
problems evaluation ofW* can be quite a nontrivial task
@13,19#. Nevertheless, once this parameter is known andt is
determined from macroscopic kinetics, the steady-state
of nuclei over the barrier under rather relaxed assumption
given by @10#

j s5d2/2tAp f eq~R* !, ~2!

with f eq}exp(2W/T) being the~quasi!equilibrium distribu-
tion ~temperature is measured in units of the Boltzmann c
stant!, andd is the width of the fluctuational region near th
critical size. The above expression is asymptotically accu
for a high nucleation barrier,W* @T, a condition which also
will be crucial for generalizations described below.

The remarkable feature of Eq.~2! is that it is model-
independent; in particular, it does not include the power
dexn which distinguishes models in Eq.~1!. Moreover, con-
sider an experimentally more realistic situation of nucleat
after a finite rate quench withq52dT/dt.0. In the adia-
batic approximation, i.e., with the nucleation rate determin
in accordance with Eq.~2! with R* 5R* (T), the number of
quenched-in nuclei will scale asq21, again independently o
the model considered.

One can expect that the difference between models
show itself for faster, nonadiabatic processes where the n
linear off-critical growth or decay of nuclei is important. O
the other hand, the contribution of the near-critical regi
where models are equivalent to each other is still expecte
be considerable~even if not dominating, as in the adiabat
case! providing a certain degree of universality.

The intent of the present paper is to provide a gene
nonadiabatic solution of the aforementioned problem of tr
sient nucleation following a finite-rate quench. Although a
tention will be focused on analytics~in particular, on the
elucidation of the connection between universality a
model dependence!, one also should keep in mind exper
mental studies@4,6,20# where some effects are in qualitativ
disagreement with the homogeneous nucleation descrip
with no quenched-in nuclei. For example, in glass-to-crys
4441 ©1999 The American Physical Society



to
r
ial
on
an
e

t
ar
i

th
n

t

m
y

n

t
m

m

ux

th
io

,

xt
tio
n

th
th

s

ge

ux

e-

sin-

nts
e

r
size

es

y
el-
The
he

Eq.

d

4442 PRE 59VITALY A. SHNEIDMAN
nucleation@4,20# the early-time numbers of nuclei appear
be systematically larger@20,21#, and the time lags smalle
@22# than conventional expectations. Similarly, exponent
type tails in the distributions of grains in amorphous silic
@6# contradict the homogeneous nucleation description,
the quenched-in nuclei~where such tails do appear—see b
low! can provide at least one possible explanation.

Formally speaking, the derivations below are restricted
models within the classical approach. Nevertheless, the
of applicability of the results is expected to be wider, since
the scaled form they turn out to be sensitive only to
growth/decay rates, which are similar in both classical a
nonclassical cases, as suggested by Eq.~1!.

Let us characterize quench by a dimensionless rate of
barrier change

n52tq~W* /T!T8 , ~3!

with the prime indicating the derivative with respect to te
perature. In Refs.@23,24# it was shown that asymptoticall
~i.e., for finite n and large W* /T) a distribution f (r )
5 f eq(r )exp$2nz(r)% is established in the subcritical regio
of sizes. The functionz(r ) is given by2*0

r dr r 3/tv(r ), and
the above distribution will serve as an initial condition at
50 for the subsequent isothermal problem. At the sa
time, the effect of quenched-inovercritical nuclei can be
neglected for a reasonably fast quench@25#. Similarly, the
quenched-in distribution of nuclei from a higher equilibriu
temperature@which would replace the abovef (r ) in the limit
n→`# can be shown to have no observable effects forW*
@T.

In the absence of an initial distribution, the reduced fl
j 0(r ,t)/ j s[f0 at an arbitrary observation sizer .1 would
be given by

f0~x!5exp~2e2x!, x[@ t2t i~r !#/t, ~4!

which is the transient flux of homogeneous nucleation@24#.
The functional shape of the solution is independent of
model, but a specific growth rate enters via the incubat
time, t i(r )@t, which contains both growth and decay@21#.
This time weakly~logarithmically! depends on the barrier
and explicit expressions are available forn50,61 @21#; at
larger the incubation time increases asr n11 for n.21 or as
ln r for n521 in Eq. ~1!. This nonuniversality oft i(r ) can
be eliminated by switching to the scaling parameterx in Eq.
~4!, and mostly will be of no interest in the present conte
On the other hand, the model dependence of the func
z(r ), which determines the quenched-in initial distributio
cannot be eliminated by simple scaling transformations.

When quenched-in nuclei are added, there is a chance
some of them will cross the barrier, effectively increasing
nucleation rate. With an appropriate scaling, thetrans-barrier
asymptote of a corresponding Green’s function is expres
through the derivative off0(X) with a shifted argumentX
5x1td(r 1)/t, and with td(r 1)52*0

r 1dr/v(r ) being the
positive decay time for a nucleus initially placed atr 1,1
@26#. Although the nucleation equation has an inhomo
neous boundary condition,f (r )→ f eq(r ) for r→0, asymp-
totically the superposition principle holds, and the total fl
can be determined as a sum of the transient flux,j 0, and a
-
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correction,d j , due to quenched-in nuclei. With the abov
mentioned initial distribution, the reduced correctiond j / j s
[I is given by

I ~n,x!52E
0

1 dr1

tv~r 1!
e2nz~r 1!f08~X!. ~5!

In the analysis of the above expression one notes the
gularity of the integrand asr 1→1; this turns out to be im-
portant for a proper limit of smalln. The large-n limit is
sensitive to the divergency ofv(r 1) as r 1→0. The function
td(r ), which enters the argumentX, and the functionz(r )
can be evaluated in elementary functions for integern in Eq.
~1!, but mostly only the asymptotes near the singular poi
will be required. For arbitraryn>21, those asymptotes ar
given by td;r n12/(n12), z;r n15/(n15) for r→0, and
td; ln(12r)1c(21n)2c(1), z; ln(12r)1c(51n)2c(1) for
r→1 with c being the digamma function@27#.

Making a substitutionZ5e2x and switching to a new
integration variabley5exp(2td /t), one obtains after some
transformations

I ~n,x!5ZE
0

1

dy exp$2nz@r ~y!#2yZ%. ~6!

This result is expected to be valid for arbitrary~though non-
asymptotic! values of the quench indexn and the paramete
Z which describes the dependence on the observation
and time. Equation~6! corresponds to bell-shaped curv
which are skewed for smalln ~see Fig. 1!. Corrections to the
distribution function in the growth region are given b
I (n,x)/v(r ) and have similar shapes which are more mod
sensitive due to an additional explicit size dependence.
tail of the distribution at large sizes is determined by t
asymptote of t i(r ): f (r )}r n exp@2nrn11/(n11)# ~or f
}r 2(n11) for n521) with a time-dependent prefactor.

In the limit of smalln the functionz can be replaced by
its logarithmic asymptote, and the integral in Eq.~6! ap-
proaches the incomplete gamma functiong* (n11,Z) @27#.

FIG. 1. The scaled excess flux due to quenched-in nuclei,
~6!, as a function ofx5(t2t i)/t for different values ofn. For n
@1 the shape of the curves approachesf08(x) with the area scaling
asn22/5. The functionf0(x), Eq.~4!, is shown by a dashed line an
corresponds to the flux due to homogeneous nucleation.
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In the formal limit n50, one hasI (0,x)512f0(x) imply-
ing that the total flux, i.e., the sum of the fluxes due
quenched-in nuclei and due to transient homogeneous nu
ation, should correspond toj s . Here, the distributionf (r )
acquires a power-law tail,f (r )}r n for r @1, which is typical
for the steady-state nucleation regime.

In the most interesting case of largen ~fast quench!, theZ
and n dependences are factorized. Here one obtainsI (n,x)
5f08(x)dr`(n)/ j st, with dr`(n) being the total number o
the observed quenched-in nuclei

dr`~n!'dra@n/~n15!#12aG~a!. ~7!

In the above, dra't j s /n is the number of nucle
quenched-in adiabatically; the model-dependent parameta
is defined asa5(n12)/(n15), and G(a) is the gamma
function. Once the correction due to quenched-in nucle
small, the total flux, which is proportional toI (n,x)
1f0(x), can be approximated as

j ~r ,t !' j sf0@x1dr`~n!/ j st#, ~8!

i.e., as the transient flux with the time shifted bydr`(n)/ j s .
For intermediaten the general Eq.~6! should be used for

the flux, while the number of quenched-in nuclei is given

dr5dranE
0

1

dy y21 exp$2nz@r ~y!#%. ~9!

For smalln one has, as expected,dr'dra .
The striking feature of the solution is thatdr is larger

than its adiabatic counterpart. This sharply contrasts w
higher moments of the distribution function which are su
pressed by nonadiabatic effects@28#. Furthermore, in con-
trast todra , the value ofdr explicitly depends on the cho
sen model via the functionz(r ), which is sensitive to
nonuniversal, nonlinear decay. Most clearly, this is se
from the asymptotic Eq.~7!: Instead of the universal depen
dence dra}q21 of the adiabatic approximation, one ha
dr}q2a with a determined by the power indexn in Eq. ~1!.

In the discrete nucleation models@8,9,12# another
asymptotic parameter, the critical cluster number,g* , enters
the problem. The discreteness effects modify the grow
decay ratev(r ) and thus the functionz(x) in the above
expressions; the asymptotes in Eq.~7! can be modified too.
Generally speaking, the neglect of such effects is poss
only for very large values ofg* @W* /T @29#, which corre-
spond to high temperatures. Nevertheless, the qualita
conclusions ofdr.dra and of model sensitivity of the re
sults are expected to hold even for smallerg* @1, and for
g* *W* /T a reasonable numerical accuracy of the res
based on the continuous growth rates, Eq.~1!, is anticipated.

To verify these analytical predictions, a master equat
@12# was solved numerically, similar to the works by Kelto
et al. @30,31#. This master equation corresponds to surfa
limited kinetics; diffusion-limited nucleation was simulate
le-
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by multiplying the rate coefficients of the master equation
r 21. To isolate the effect of quenched-in nuclei the transi
flux of homogeneous nucleation was subtracted from the
flux observed atr 51.7.

Parameters of lithium disilicate were considered withT
5900 K. The latter is larger than the temperatures of
actual experimental measurements@4,5#, but it gives reason-
ably high values ofg* '65 andW* /T'78, with moderate
discreteness effects.

Strictly speaking, the obtained analytical results should
applied with caution to glass-forming melts which are ch
acterized not only by the change of the barrier, but also by
increase int in the course of a quench. In particular, alrea
in the adiabatic approximationdra can be larger thant j s /n.
Nevertheless, as long as one remains at temperatures h
than that of the maximum nucleation rate~higher than the
glass transition temperature!, results are expected to rema
qualitatively correct, and reasonably accurate if scaled
dra . ~This was verified by bringing the temperature down
730 K.! For the higher temperature of 900 K~Fig. 2! the
results are not only qualitatively but also numerically acc
rate. In accord with the analytical conclusion, contributio
of quenched-in nuclei are larger than the adiabatic expe
tion. The predicted model dependence of the correction
also observed, although the difference is somewhat sma
than between the analytical expressions. The latter is lik
due to the discrete nature of the boundary condition for
master equation which removes the region of very smalr ,
where the difference between the two models is the larg
For the same reason, analytical predictions turn out to
more accurate in the diffusion case—faster decay of sm
nuclei reduces the contribution of the corresponding reg
of sizes, and thus reduces the role of discreteness effec

In summary, the first analytical~asymptotic! study of the
full transient nucleation problem, including the conditions
preliminary quench, was performed. Results distinctly co
tain universal ~model-independent! and model-sensitive
components. Although the treatment was strictly justifi
~and verified numerically! only for models within the classi-
cal nucleation picture, results are expected to be of broa

FIG. 2. Nonuniversality~model dependence! in the number of
quenched-in nuclei,dr/dra . Symbols, from numerical solutions o
the nucleation master equation; dashed and dotted lines, Eq~9!
with n50 andn51, respectively. Note that for smalln ~adiabatic
regime! the difference between models disappears.
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validity due to archetypal structure of the growth rate expr
sions. In particular, it was found that the observed numbe
quenched-in nuclei scales nonuniversally with the que
rate, being determined by the peculiarities of the nonlin
decay. For fast quenches, the number of such nuclei is d
l-
-
f
h
r

er-

mined by the type of singularity in the decay of smalle
nuclei, which is model-specific. Surprisingly, the value
this number turns out to be larger~not smaller! than conven-
tional predictions based on universal, adiabatic approxim
tions.
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