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Nonuniversality of nucleation kinetics following a finite rate quench
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Nucleation fluxes and numbers of nuclei are evaluated as functions of time and the quengh uaieg
asymptotic technique. In contrast to predictions of conventi¢adiabati¢ nucleation descriptions with the
number of quenched-in nuclei scaling @s?, a different scalingy™“ is observed with nonuniversal, model-
dependent values af<1.[S1063-651X99)08704-§

PACS numbegps): 64.60.Qb, 05.40-a, 05.70.Ln

It is well known [1,2] that a rapid quench can bring a bution of nucleif(r) in the classical picture, or to functional
physical system into a metastable state which is characteequations for the order parameter in field-theorétionclas-
ized by a prolonged lifetime. The latter is determined by thesical) descriptions.
intensity of nucleation and growth of the stable phase, before The key characteristic of the nucleation problem is the
the system settles in thermodynamic equilibrium. Experi-minimal work, W(R), which is required to create a given
mental examples include supersaturated vefddr under-  nucleus. Its maximumyV, (saddle point in the multidimen-
cooled or overheated liquid2], binary fluids[3], glass- sional casg determines the barrier to nucleation. In specific
forming melts [4,5], amorphous solidg6], electron-hole problems evaluation ofV, can be quite a nontrivial task
liquid [7], to mention only a few. In view of the enormous [13,19. Nevertheless, once this parameter is known arsl
variety of nucleation modelgboth “classical” [8—12] or  determined from macroscopic kinetics, the steady-state flux
“nonclassical,” e.g.,[2,13]), which are used to explain or of nuclei over the barrier under rather relaxed assumptions is
predict the observed behavior, one requires an understandirgven by[10]
of the sensitivity of the description to the selection of a spe-
cific type of a nucleation mechanism, and, on the other hand, is= 52/27\/;feq( R,), (2
an understanding of its universality.

As a first step to understand the differences between varivith f.<exp(~W/T) being the(quasjequilibrium distribu-
ous nucleation models, one can consider a much simpler déon (temperature is measured in units of the Boltzmann con-
terministic growth of nuclei, which neglects fluctuations. A stany, and§ is the width of the fluctuational region near the

typical growth rate is given by critical size. The above expression is asymptotically accurate
for a high nucleation barriekV, > T, a condition which also
v(r)=7"1r""(1-1Ir), (1) will be crucial for generalizations described below.

The remarkable feature of E@2) is that it is model-
with r=R/R, (R, being the critical sizeand r some char- independent; in particular, it does not include the power in-
acteristic time scale which will be described shortly. Thedex v which distinguishes models in E¢L). Moreover, con-
value of the power indexy, depends on the mass exchangesider an experimentally more realistic situation of nucleation
mechanism between the nucleus and the metastable phaséer a finite rate quench with=—dT/dt>0. In the adia-
with »=0,£1 corresponding to surfacg¢ll] or diffusion-  batic approximation, i.e., with the nucleation rate determined
limited [14] growth or cavitation[10], respectively. Similar in accordance with Eq2) with R, =R, (T), the number of
expressions also appear in field-theoretic descriptions for guenched-in nuclei will scale ap *, again independently of
nonconserved =0 [15]) or conserved ¥=1 [16]) order the model considered.
parameter, withv=—1 corresponding to inflation models. One can expect that the difference between models will
Combinations of several types of dynamics can be encourshow itself for faster, nonadiabatic processes where the non-
tered both within classic4ll7] and nonclassical descriptions linear off-critical growth or decay of nuclei is important. On
[13], but the main feature of the changing signRs¢R, the other hand, the contribution of the near-critical region
(equivalently, the presence of a single unstable njé8® is  where models are equivalent to each other is still expected to
typical, and determines the universality of the kinetic part ofbe considerablé¢even if not dominating, as in the adiabatic
the description. The nonlinear off-critical dynamics, on thecase providing a certain degree of universality.
other hand, is model-sensitive. The intent of the present paper is to provide a general

The parameter in Eq. (1), which formally can be defined nonadiabatic solution of the aforementioned problem of tran-
as [dv/dr)~! atr=1, provides a link between growth and sient nucleation following a finite-rate quench. Although at-
nucleation[10], with 7~ corresponding to the increment of tention will be focused on analyticSn particular, on the
the unstable mode in field-theoretic descriptioh3]. elucidation of the connection between universality and
Nucleation—the possibility of a nucleus to go against themodel dependengeone also should keep in mind experi-
drift prescribed by Eq(1)—becomes feasible due to thermal mental studie$4,6,20 where some effects are in qualitative
fluctuations. This leads either to a Fokker-Plank-type equadisagreement with the homogeneous nucleation description,
tion [10,1]] (discrete master equati$8,9,12) for the distri-  with no quenched-in nuclei. For example, in glass-to-crystal
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nucleation[4,20] the early-time numbers of nuclei appear to
be systematically largdr20,21], and the time lags smaller
[22] than conventional expectations. Similarly, exponential- 08 |
type tails in the distributions of grains in amorphous silicon
[6] contradict the homogeneous nucleation description, and
the quenched-in nucléivhere such tails do appear—see be- 06
low) can provide at least one possible explanation.
Formally speaking, the derivations below are restricted to

I{n,x)

models within the classical approach. Nevertheless, the are 04 1
of applicability of the results is expected to be wider, since in
the scaled form they turn out to be sensitive only to the oo |

growth/decay rates, which are similar in both classical and
nonclassical cases, as suggested by(Ex.

Let us characterize quench by a dimensionless rate of the 0
barrier change

n=—7mq(W, /T)s, ©) FIG. 1. The scaled excess flux due to quenched-in nuclei, Eq.
(6), as a function ofx=(t—t;)/r for different values ofn. Forn
with the prime indicating the derivative with respect to tem-> 1 the shape of the curves approachigéx) with the area scaling
perature. In Refs[23,24 it was shown that asymptotically 2SN~ - The functiond(x), Eq.(4), is shown by a dashed line and
(.e., for finite n and large W, /T) a distribution f(r) corresponds to the flux due to homogeneous nucleation.
=fer)exp{—n¢(r)} is established in the subcritical region
of sizes. The functiord(r) is given by— [{dr r3/7v(r), and . o S - e
the above distribution will serve as an initial conditiontat Tlari\gori\\(/egnlrl;|t|al distribution, the reduced correctioj/js
=0 for the subsequent isothermal problem. At the same 9 y
time, the effect of quenched-iovercritical nuclei can be 1 dr
neglected for a reasonably fast querd@3|. Similarly, the 1(n,x)= _f _1e*né<f1>¢6(x)_ (5)
guenched-in distribution of nuclei from a higher equilibrium o 7v(ry)
temperatur¢which would replace the aboviér) in the limit . ) ]
ST gularity of the integrand as;— 1; this turns out to be im-
In the absence of an initial distribution, the reduced fluxPortant for a proper limit of smalh. The largen limit is
j%(r.t)/js= o at an arbitrary observation size-1 would ~ Sensitive to the divergency of(r,) asr;—0. The function

correction, §j, due to quenched-in nuclei. With the above-

be given by tq(r), which enters the argumeiq, and the function/(r)
can be evaluated in elementary functions for integer Eq.
do(X)=exp—e %), x=[t—t;(r)]/r, (4) (1), but mostly only the asymptotes near the singular points

will be required. For arbitrarg=—1, those asymptotes are

which is the transient flux of homogeneous nucleafid4]. given by ty~r""2/(v+2), {~r"*%/(v+5) for r—0, and
The functional shape of the solution is independent of thdy~In(1—r)+ 2+ v)— (1), {~In(1—r)+p(5+v)— (1) for
model, but a specific growth rate enters via the incubatiom— 1 with ¢ being the digamma functiof27].
time, t;(r)> 7, which contains both growth and decg24]. Making a substitutionZ=e * and switching to a new
This time weakly(logarithmically depends on the barrier, integration variabley=exp(-ty/7), one obtains after some
and explicit expressions are available for0,+1 [21]; at  transformations
larger the incubation time increases s ! for v>—1 or as
Inr for v=—1 in Eqg.(1). This nonuniversality of;(r) can [
be eliminated by switching to the scaling parametén Eq. I(n,x)—Zfo dy exp{—n{[r(y)]-yZ}. ©®)
(4), and mostly will be of no interest in the present context.
On the other hand, the model dependence of the functiofhis result is expected to be valid for arbitratiiough non-
{(r), which determines the quenched'in initial distribution, asymptona values of the quench indaxand the parameter
cannot be eliminated by simple scaling transformations. 7 which describes the dependence on the observation size

When quenched-in nuclei are added, there is a chance thaghd time. Equation(6) corresponds to bell-shaped curves
some of them will cross the barrier, effectively increasing tthh|0h are skewed for smati (See F|g J_ Corrections to the
nucleation rate. With an appropriate scaling, titems-barrier  djstribution function in the growth region are given by
asymptote of a corresponding Green’s function is expresseg{n,x)/v(r) and have similar shapes which are more model-
through the derivative oto(X) with a shifted argumenX  sensitive due to an additional explicit size dependence. The
=Xx+1t4(ry)/7, and with ty(r;)=—fgdr/v(r) being the tail of the distribution at large sizes is determined by the
positive decay time for a nucleus initially placed rgt<1 asymptote of t;(r): f(r)ecr” exd—nr’*Y(v+1)] (or f
[26]. Although the nucleation equation has an inhomoge<r~—(""1) for y=—1) with a time-dependent prefactor.
neous boundary conditiorf,(r)— fe(r) for r—0, asymp- In the limit of smalln the function{ can be replaced by
totically the superposition principle holds, and the total fluxits logarithmic asymptote, and the integral in E§) ap-
can be determined as a sum of the transient flixand a  proaches the incomplete gamma functigh(n+1,2) [27].
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In the formal limitn=0, one had (0,x) =1— ¢y(x) imply- ' ' '
ing that the total flux, i.e., the sum of the fluxes due to
guenched-in nuclei and due to transient homogeneous nucle §
ation, should correspond t,. Here, the distributiorf (r) _ 10 o

acquires a power-law taif(r)ocr” for r>1, which is typical cSurface-limited o 7
for the steady-state nucleation regime. w7
In the most interesting case of largéfast quench theZ 5T IS 7

and n dependences are factorized. Here one obtHinsx)
= ¢4(X) 5p(n)/js7, with Sp..(n) being the total number of
the observed quenched-in nuclei

reduced number of nuclei

8p=-(n)=pa[n/(v+5)]' T (). (@)

10 100

In the above, dp,~7js/n is the number of nuclei _ _ _
quenched-in adiabatically; the model-dependent parameter ~ FIG. 2. Nonuniversalitymodel dependengén the number of
is defined asa=(v+2)/(v+5), andI'(«) is the gamma guenched-in nucleigp/ 5p, . Symbols, from numerical solutions of

function. Once the correction due to quenched-in nuclei ighe nucleation master equation; dashed and dotted lines(%q.
small, the total flux, which is proportional td(n,x) with v=0 andv=1, respectively. Note that for smail (adiabatic

+ ¢o(X), can be approximated as regime the difference between models disappears.

by multiplying the rate coefficients of the master equation by
) , ) r~1. To isolate the effect of quenched-in nuclei the transient
() =jsdol X+ dp.(n)/js7], ®  flux of homogeneous nucleation was subtracted from the full
flux observed at=1.7.

Parameters of lithium disilicate were considered with
=900 K. The latter is larger than the temperatures of the
actual experimental measuremejdss], but it gives reason-
ably high values ofy, ~65 andW, /T~78, with moderate
discreteness effects.

1 Strictly speaking, the obtained analytical results should be
Sp= 5Pa”J dy y exp{—nZ[r(y)]}. (9)  applied with caution to glass-forming melts which are char-
0 acterized not only by the change of the barrier, but also by an
increase inr in the course of a quench. In particular, already
For smalln one has, as expectedp~ Sp, . in the adiabatic approximatiofip, can be larger thamj/n.

The striking feature of the solution is thap is larger  Nevertheless, as long as one remains at temperatures higher
than its adiabatic counterpart. This sharply contrasts withhan that of the maximum nucleation rateigher than the
higher moments of the distribution function which are sup-glass transition temperatyreesults are expected to remain
pressed by nonadiabatic effed®8]. Furthermore, in con- qualitatively correct, and reasonably accurate if scaled by
trast todp,, the value ofép explicitly depends on the cho- 5y, . (This was verified by bringing the temperature down to
sen model via the functiorf(r), which is sensitive to 730 K) For the higher temperature of 900 (Fig. 2 the
nonuniversal, nonlinear decay. Most clearly, this is seenresults are not only qualitatively but also numerically accu-
from the asymptotic Eq(7): Instead of the universal depen- rate. In accord with the analytical conclusion, contributions
dence dp,>q~" of the adiabatic approximation, one has of quenched-in nuclei are larger than the adiabatic expecta-
dpxq” * with « determined by the power indexin Eq.(1).  tion. The predicted model dependence of the corrections is

In the discrete nucleation model§8,9,12 another also observed, although the difference is somewhat smaller
asymptotic parameter, the critical cluster numiggr, enters  than between the analytical expressions. The latter is likely
the problem. The discreteness effects modify the growthfue to the discrete nature of the boundary condition for the
decay ratev(r) and thus the function/(x) in the above master equation which removes the region of very small
expressions; the asymptotes in E@ can be modified too. where the difference between the two models is the largest.
Generally speaking, the neglect of such effects is possiblgor the same reason, analytical predictions turn out to be
only for very large values of, >W, /T [29], which corre-  more accurate in the diffusion case—faster decay of small
spond to high temperatures. Nevertheless, the qualitativeuclei reduces the contribution of the corresponding region
conclusions ofép> dp, and of model sensitivity of the re- of sizes, and thus reduces the role of discreteness effects.
sults are expected to hold even for smaligr=1, and for In summary, the first analyticdhsymptoti¢ study of the
g.=W, /T a reasonable numerical accuracy of the resultgull transient nucleation problem, including the conditions of
based on the continuous growth rates, €4, is anticipated. preliminary quench, was performed. Results distinctly con-

To verify these analytical predictions, a master equatiortain universal (model-independent and model-sensitive
[12] was solved numerically, similar to the works by Kelton components. Although the treatment was strictly justified
et al. [30,31. This master equation corresponds to surface{and verified numericallyonly for models within the classi-
limited kinetics; diffusion-limited nucleation was simulated cal nucleation picture, results are expected to be of broader

i.e., as the transient flux with the time shifted 8y..(n)/j.
For intermediaten the general Eq(6) should be used for
the flux, while the number of quenched-in nuclei is given by
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validity due to archetypal structure of the growth rate expresmined by the type of singularity in the decay of smallest
sions. In particular, it was found that the observed number ofiuclei, which is model-specific. Surprisingly, the value of
guenched-in nuclei scales nonuniversally with the quenclhis number turns out to be larg@rot smalley than conven-
rate, being determined by the peculiarities of the nonlineational predictions based on universal, adiabatic approxima-

decay. For fast quenches, the number of such nuclei is detetions.
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